Quantum Speedup for Sampling Random Spanning Trees

Chenghua Liu¹

¹Institute of Software, Chinese Academy of Sciences, Beijing, China

Zhengfeng Ji²

²Department of Computer Science and Technology, Tsinghua University, Beijing, China ³Université Paris Cité, CNRS, IRIF, Paris, France

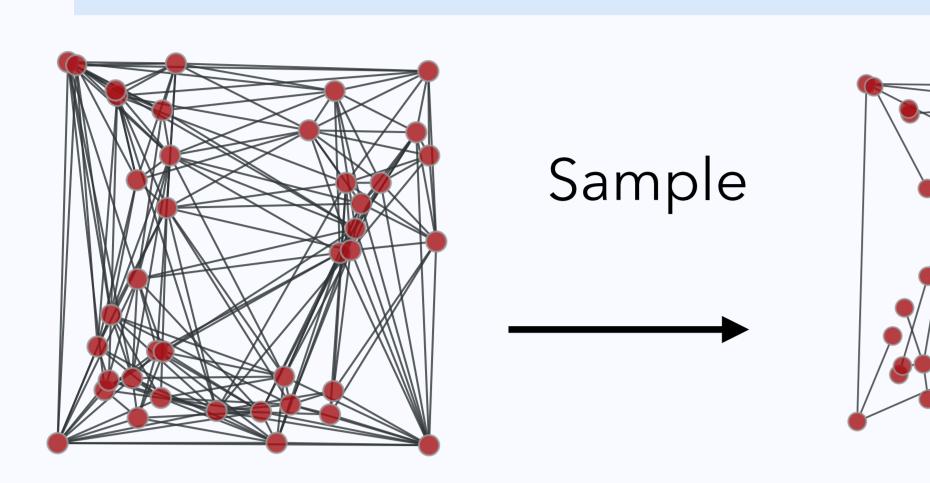
Random Spanning Trees-1

 $G = (V, E, w), |V| = n, |E| = m, w \in \mathbb{R}_{+}^{E}$

Let \mathcal{T}_G denote the set of all spanning trees of GDefine the distribution W_G on \mathcal{T}_G by

$$P_{X \sim W_G}[X = T] \propto \prod_{e \in T} w_e$$

Goal: sample a spanning tree $T \sim W_G$



Many Applications: algorithm design, machine learning, statistics ...

Random Spanning Trees-2

Sampling RSTs has been widely studied classically, with three main algorithmic approaches:

1. Determinant-Based Methods:

Guenoche 83 & Kulkarni 90: $O(mn^3)$;

Minbo Gao¹

Colbourn, Myrvold, and Neufeld 96: $O(n^{\omega})$.

2. Effective Resistance-Based Methods:

Harvey and Xu 16: $O(n^{\omega})$;

Schild 18: $m^{1+o(1)}$;

Durfee, Kyng, Peebles, Rao and Sachdeva 17: $\widetilde{O}(n^{4/3}m^{1/2} + n^2)$; Durfee, Peebles, Peng and Rao 17: $\widetilde{O}(n^2/\varepsilon^2)$.

3. Random Walk-Based Methods:

Broder 89 & Aldous 90: O(mn) for unweighted; Wilson 96; Kelner, Madry 09; Madry, Straszak, Tarnawski 14;

The current state-of-the-art: based on down-up random walks, $O(m \log^2 m)$.

Our Results

Theorem.

Simon Apers³

There exists a quantum algorithm that, given query access to the adjacency list of a connected graph Gand accuracy parameter ε , with high probability, outputs a spanning tree of G drawn from a distribution which is arepsilon-close to W_G in total variation distance. The algorithm runs in $O(\sqrt{mn} \log(1/\varepsilon))$ time.

Lower bound:

Let $\varepsilon < 1/2$ be a constant. For any graph G, consider the problem of sampling a random spanning tree from a distribution arepsilon-close to $W_{G'}$ given adjacency-list access to G. The quantum query complexity of this problem is $\Omega(\sqrt{mn})$.

Background: down-up walk

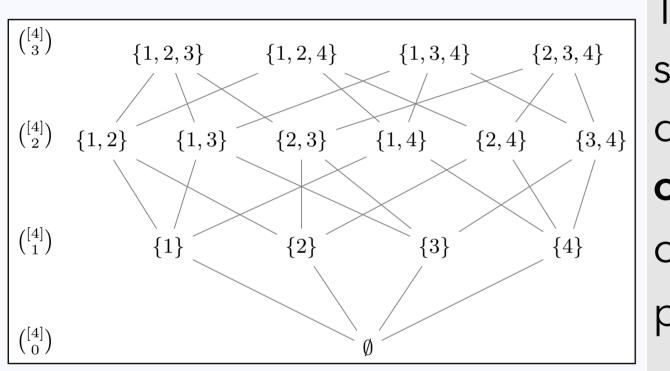
Consider a distribution μ over size-k subsets of [m]

We define the down operator $D_{k
ightarrow \ell}$ and the up operator $U_{\ell o k'}$ which map between sets of different sizes: from size-k to size- ℓ I subsets, and vice versa.

$$U_{\ell \to k}(T,S) = \begin{cases} 0 & \text{if } T \nsubseteq S, \\ \frac{\mu(S)}{\sum_{S': T \subseteq S'} \mu(S')} & \text{otherwise} \end{cases} \quad D_{k \to \ell}(S,T) = \begin{cases} 0 & \text{if } T \nsubseteq S, \\ \frac{1}{\binom{k}{\ell}} & \text{otherwise} \end{cases}$$

$$Lemma. Proposition 25 in [ADVY22]$$

$$The complement of S_1 is distributed according to
$$\bar{\mu}_0 D_{(m-k) \to (m-t)} U_{(m-t) \to (m-k)} \text{ if we start with } S_0 \sim \mu_0, \text{ where } I$$$$



The **down operator** randomly selects a smaller subset (moving downward). And the **up** operator moves upward by choosing a size-k superset with probability proportional to $\mu(S)$.

Down-up walk for sampling RSTs

Starting from $S_0 \in \mathbf{supp}(\mu)$, one step of the down-up walk M_u^t , $t \ge k+1$:

1. Sample
$$T \in {[m] \backslash S_0 \choose t-k}$$
 uniformly at random

2. Let $S_1 \sim \mu_{S_0 \cup T}$, and update $S_0 \leftarrow S_1$

 $\mu_{S_0 \cup T}$ is μ restricted to $S_0 \cup T$

 $\bar{\mu}_0 D_{(m-k) o (m-t)} U_{(m-t) o (m-k)}$ if we start with $S_0 \sim \mu_0$, where $\bar{\mu}(S) := \mu([m] \setminus S)$. Moreover, for any distribution μ that is strongly Rayleigh, the chain is irreducible, aperiodic and has stationary distribution μ .

 W_G is strongly Rayleigh, and 1-step down-up walk becomes: Remove an edge uniformly randomly

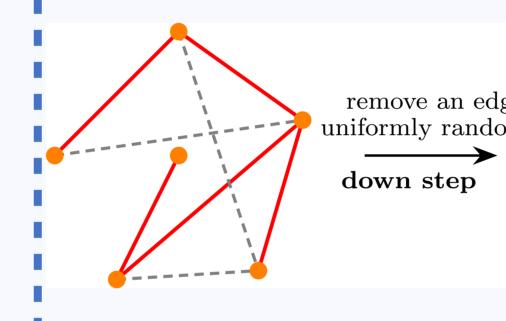
Add a new edge sampled proportionally to the edge weights between components

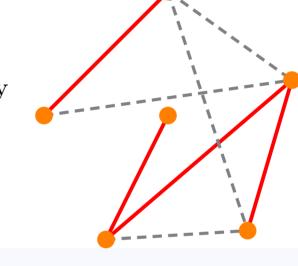
Down-up walk for sampling RSTs

[Nima, Kuikui, Shayan, Cynthia, Thuy-Duong STOC21]

- 1-step down-up walk for sampling RSTs:
- 1. remove an edge to split the tree
- 2. add a new edge sampled proportionally to the edge weights between components

The chain has the mixing time O(n).





Their final algorithm uses an "up-down" walk: first add an edge, then remove one. Although the mixing time is O(m), each sample step runs in amortized O(1) time via link-cut trees.

Barrier and Idea for Quantum Speedups

Revisit the Down-Up Walk:

We can sample an edge between the two resulting components in $O(\sqrt{m})$ time using Grover Search. But overall complexity remains $O(\sqrt{mn}) \in \Omega(m)$, offering no speedup.

Inspired by domain sparsification techniques [AD20, ADVY22, ALV22]

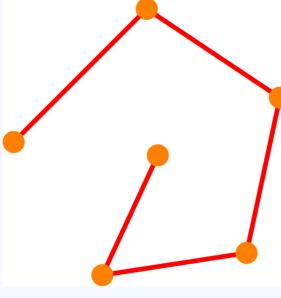
Key Ideas:

- Large-Step Walks: Modify $\Theta(n)$ edges in each step (vs. 1 in classical), reducing mixing time to O(1).
- Isotropy transformation: Reduce sampling domain size from m to O(n) using isotropic transformation (enables large-step walks to work well).

Quantum Sampling RSTs

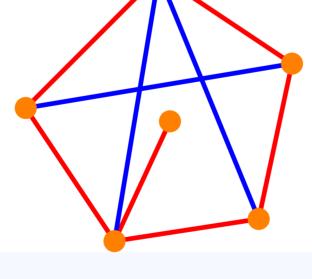
Framework.

Large-Step Walks: Modify $\Theta(n)$ edges in each step, reducing mixing time to O(1).

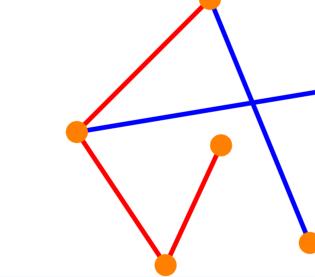


n-1 edges

add 3 edges up-step uniformly randomly



sample a RST



 $\Theta(n)$ edges

Requirement.

Perform an isotropic transformation—that is, adjust the graph so that the marginal probabilities of all edges are approximately equal.

The marginal probability of an edge e is given by:

 $\Pr[e \in T, T \sim W_G] = w_e \cdot R(e)$

 $R(e) := (\delta_i - \delta_i)^{\mathsf{T}} L_G^+(\delta_i - \delta_i), \ e = \{i, j\}$

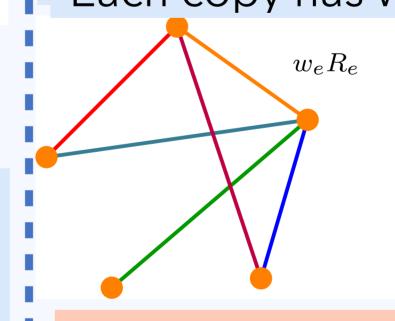
Isotropic Transformation

Defintion.

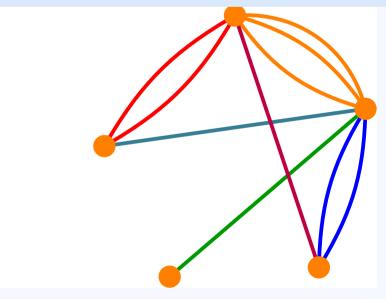
Given a graph G = (V, E, w) and a vector $\widetilde{R} \in \mathbb{R}^E$ approximating effective resistances R, the isotropictransformed multigraph G' = (V, E', w') is constructed as follows:

Each edge $e \in E$ is replaced by $q_e = \lceil m \cdot w_e \widetilde{R}_e / (2n) \rceil$ parallel edges.

Each copy has weight w_e/q_e .



the weight equally divided isotropic transform



Proposition.

The transformed graph satisfies $|E'| \leq 2m$, and the marginals are nearly uniform:

 $\Pr[e' \in S, S \sim W_{G'}] \le 2n/m = o(1)$.

Then the mixing time is $\widetilde{O}(1)$, by the analysis in [ALV22].

Implicit Isotropic Transformation:

Time $\widetilde{O}(\sqrt{mn})$ **Quantum Graph Sparsification [AdW22]** Rather than explicitly computing this isotropic transformation, we utilize a quantum data structure ${\mathscr R}$ which provides quantum query access to effective resistances, to "implicitly" construct and maintain the isotropic-transformed multigraph.

Time $\widetilde{O}(\sqrt{mn})$ Quantum Isotropic Sampling with ${\mathscr R}$ (up step) Sample $\Theta(n)$ edges from the isotropic-transformed multigraph uniformly at random (a sampling-without-replacement variant of multiple-state preparation [Ham22]).

Time $\widetilde{O}(\sqrt{mn})$ **Quantum Minimum Spanning Tree [DHHM06]** Find a spanning tree with maximum product of edge weights as a "good" starting point for the down-up walk.

Quantum Lower Bound

Lower bound:

Let $\varepsilon < 1/2$ be a constant. For any graph G, consider the problem of sampling a random spanning tree from a distribution ε -close to W_G . The quantum query complexity of this problem is $\Omega(\sqrt{mn})$.

Follows via reduction from finding n marked elements among m, which has quantum query complexity $\Theta(\sqrt{mn})$. The reduction encodes the search into edge weights so that a uniform spanning tree reveals the marked elements. Similar to the $\Omega(\sqrt{mn})$ lower bound for MST in [DHHM06].

Open Questions & References

Open questions.

- I. Faster algorithm for unweighted graphs?
- 2. The down-up walk is a powerful tool in classical algorithms (e.g., colorings, matchings). Can our quantum approach yield speedups for them?
- 3. Determinantal Point Processes (DPPs)?

References:

FOCS, 2022.

[AD20] Anari and Dereziński. Isotropy and log-concave polynomials. FOCS, 2020. [ADVY22] Anari, Dereziński, Vuong, and Yang. Domain sparsification via entropic independence. ITCS, 2022. [ALV22] Anari, Liu, and Vuong. Optimal sublinear sampling of spanning trees and DPPs.

[AdW22] Apers and de Wolf. Quantum speedup for graph sparsification and Laplacian solving. SIAM J. Comput., 2022.

[Ham22] Hamoudi. Preparing many copies of a quantum state in the black-box model. Phys. Rev. A, 2022.

[DHHM06] Dürr, Heiligman, Høyer, and Mhalla. Quantum query complexity of some graph problems. SIAM J. Comput., 2006.