Quantum Speedup for Sampling Random Spanning Trees

Chenghua Liu¹

Minbo Gao¹

Zhengfeng Ji²

Simon Apers³

¹Institute of Software, Chinese Academy of Sciences, Beijing, China ²Department of Computer Science and Technology, Tsinghua University, Beijing, China

³ Université Paris Cité, CNRS, IRIF, Paris, France

July 10, 2025 @ ICALP 2025, Aarhus, Denmark

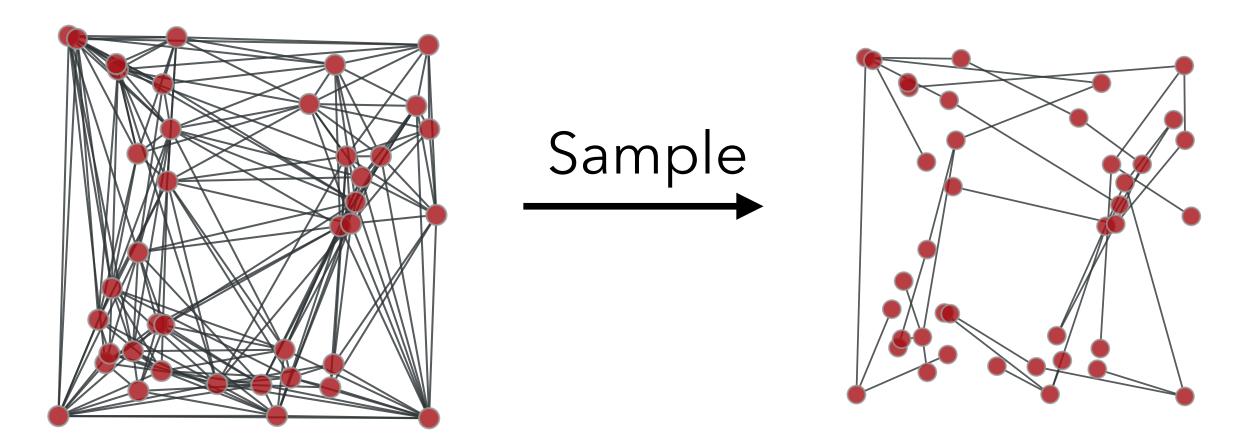
Random Spanning Trees-1

$$G = (V, E, w)$$

Let \mathcal{T}_G denote the set of all spanning trees of G

Define the distribution W_G on \mathcal{T}_G by $P_{X \sim W_G}[X = T] \propto \prod_{e \in T} w_e$

Goal: sample a spanning tree $T \sim W_G$



Random Spanning Trees

Many Applications: algorithm design, machine learning, statistics ...

Sampling RSTs has been widely studied classically, with three main algorithmic approaches:

1. Determinant-Based Methods:

Guenoche 83 & Kulkarni 90: $O(mn^3)$;

Colbourn, Myrvold, and Neufeld 96: $O(n^{\omega})$.

2. Effective Resistance-Based Methods:

Harvey and Xu 16: $O(n^{\omega})$;

Durfee, Kyng, Peebles, Rao and Sachdeva 17: $\widetilde{O}(n^{4/3}m^{1/2} + n^2)$;

Durfee, Peebles, Peng and Rao 17: $\widetilde{O}(n^2/\varepsilon^2)$.

3. Random Walk-Based Methods:

Broder 89 & Aldous 90: O(mn) for unweighted;

Wilson 96; Kelner, Madry 09; Madry, Straszak, Tarnawski 14; Schild 18: $m^{1+o(1)}$;

The current state-of-the-art: based on down-up random walks, $O(m \log^2 m)$.

Our Results

$$G = (V, E, w), |V| = n, |E| = m, w \in \mathbb{R}_+^E$$

$$P_{X \sim W_G}[X = T] \propto \prod_{e \in T} w_e$$

Theorem.

There exists a quantum algorithm that, given query access to the adjacency list of a connected graph G and accuracy parameter ε , with high probability, outputs a spanning tree of G drawn from a distribution which is ε -close to W_G in total variation distance. The algorithm runs in $O(\sqrt{mn}\log(1/\varepsilon))$ time.

Lower bound:

Let $\varepsilon < 1/2$ be a constant. For any graph G, consider the problem of sampling a random spanning tree from a distribution ε -close to W_G , given adjacency-list access to G. The quantum query complexity of this problem is $\Omega(\sqrt{mn})$.

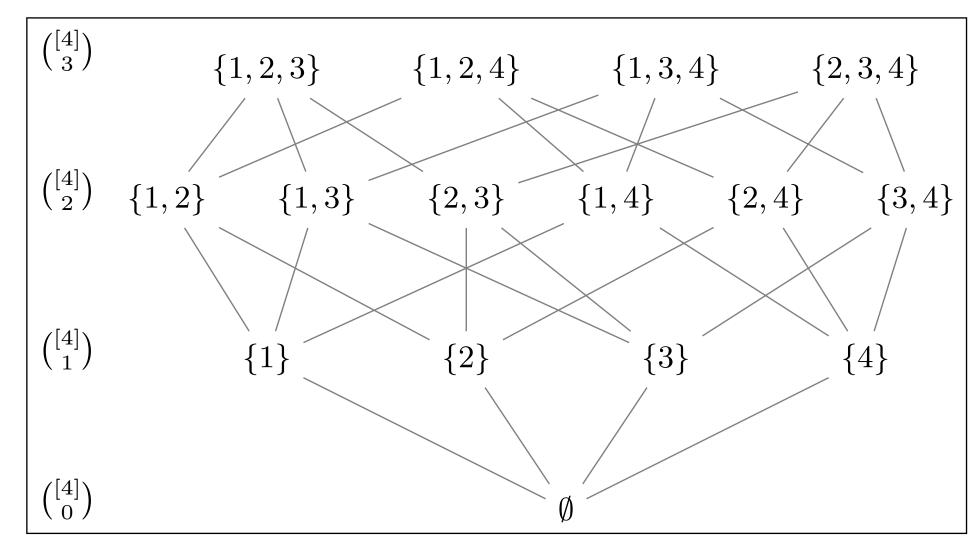
Background: down-up walk

Consider a distribution μ over size-k subsets of [m]

We define the down operator $D_{k o\ell}$ and the up operator $U_{\ell o k'}$ which map between sets of different sizes: from size-k to size- ℓ subsets, and vice versa.

$$U_{\ell \to k}(T,S) = \begin{cases} 0 & \text{if } T \nsubseteq S, \\ \frac{\mu(S)}{\sum_{S': T \subseteq S'} \mu(S')} & \text{otherwise} \end{cases} \qquad D_{k \to \ell}(S,T) = \begin{cases} 0 & \text{if } T \nsubseteq S, \\ \frac{1}{\binom{k}{\ell}} & \text{otherwise} \end{cases}$$

$$D_{k \to \ell}(S, T) = \begin{cases} 0 & \text{if } T \nsubseteq S, \\ \frac{1}{\binom{k}{\ell}} & \text{otherwise} \end{cases}$$



The down operator randomly selects a smaller subset (moving downward). And the **up operator** moves upward by choosing a size-k superset with probability proportional to $\mu(S)$.

Down-up walk for sampling RSTs

Starting from $S_0 \in \text{supp}(\mu)$, one step of the down-up walk M_μ^t , $t \ge k+1$:

1. Sample
$$T \in {[m] \backslash S_0 \choose t-k}$$
 uniformly at random

2. Let $S_1 \sim \mu_{S_0 \cup T'}$ and update $S_0 \leftarrow S_1$

 $\mu_{S_0 \cup T}$ is μ restricted to $S_0 \cup T$

Lemma. Proposition 25 in [ADVY22]

The complement of S_1 is distributed according to $\bar{\mu}_0 D_{(m-k) \to (m-t)} U_{(m-t) \to (m-k)}$ if we start with $S_0 \sim \mu_0$, where $\bar{\mu}(S) := \mu([m] \setminus S)$. Moreover, for any distribution μ that is strongly Rayleigh, the chain is irreducible, aperiodic and has stationary distribution μ .

 W_G is strongly Rayleigh, and 1-step down-up walk becomes:

Remove an edge uniformly randomly

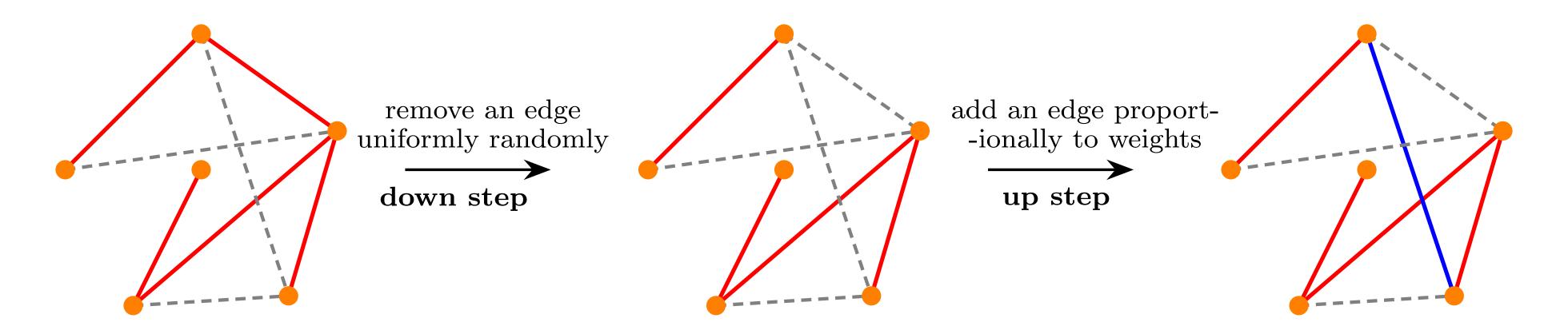
Add a new edge sampled proportionally to the edge weights between components

Down-up walk for sampling RSTs

[Nima, Kuikui, Shayan, Cynthia, Thuy-Duong STOC21]

1-step down-up walk for sampling RSTs:

- 1. remove an edge to split the tree
- 2. add a new edge sampled proportionally to the edge weights between components. The chain has the mixing time $\widetilde{O}(n)$.



Their final algorithm uses an "up-down" walk: first add an edge, then remove one. Although the mixing time is $\widetilde{O}(m)$, each sample step runs in amortized $\widetilde{O}(1)$ time via link-cut trees.

Barrier and Idea for Quantum Speedups

Revisit the Down-Up Walk:

We can sample an edge between the two resulting components in $\widetilde{O}(\sqrt{m})$ time using Grover Search. But overall complexity remains $\widetilde{O}(\sqrt{m}n) \in \widetilde{\Omega}(m)$, offering no speedup.

Inspired by domain sparsification techniques [AD20, ADVY22, ALV22]

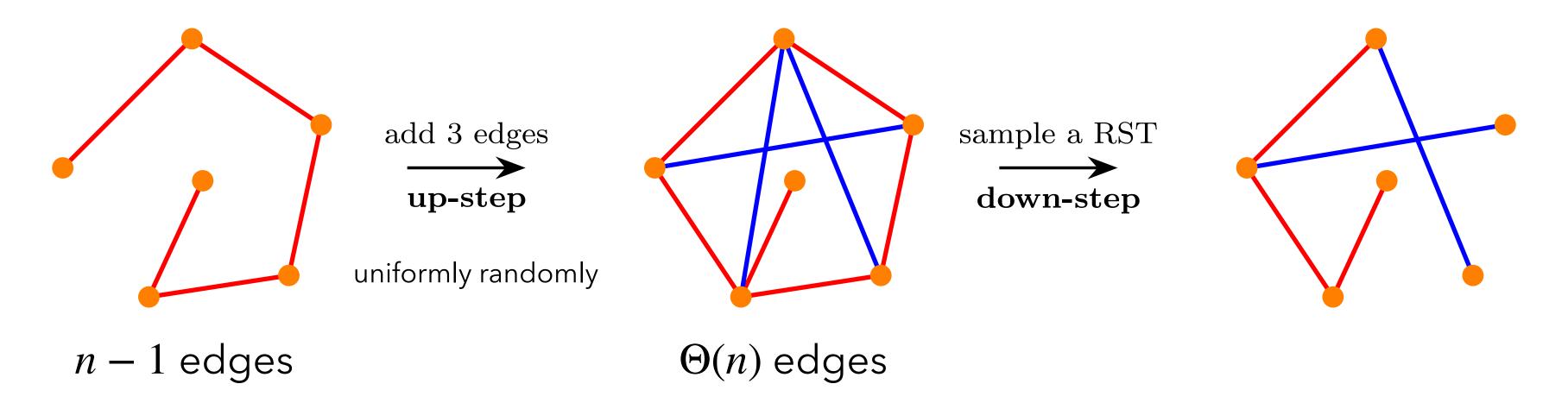
Key Ideas:

- Large-Step Walks: Modify $\Theta(n)$ edges in each step (vs. 1 in classical), reducing mixing time to $\widetilde{O}(1)$.
- Isotropy transformation: Reduce sampling domain size from m to O(n) using isotropic transformation (enables large-step walks to work well).

Quantum Sampling RSTs

Framework.

Large-Step Walks: Modify $\Theta(n)$ edges in each step, reducing mixing time to O(1).



Requirement.

Perform an isotropic transformation—that is, adjust the graph so that the marginal probabilities of all edges are approximately equal.

The marginal probability of an edge e is given by: $\Pr[e \in T, T \sim W_G] = w_e \cdot R(e)$

$$R(e) := (\delta_i - \delta_j)^{\mathsf{T}} L_G^+ (\delta_i - \delta_j), \ e = \{i, j\}$$

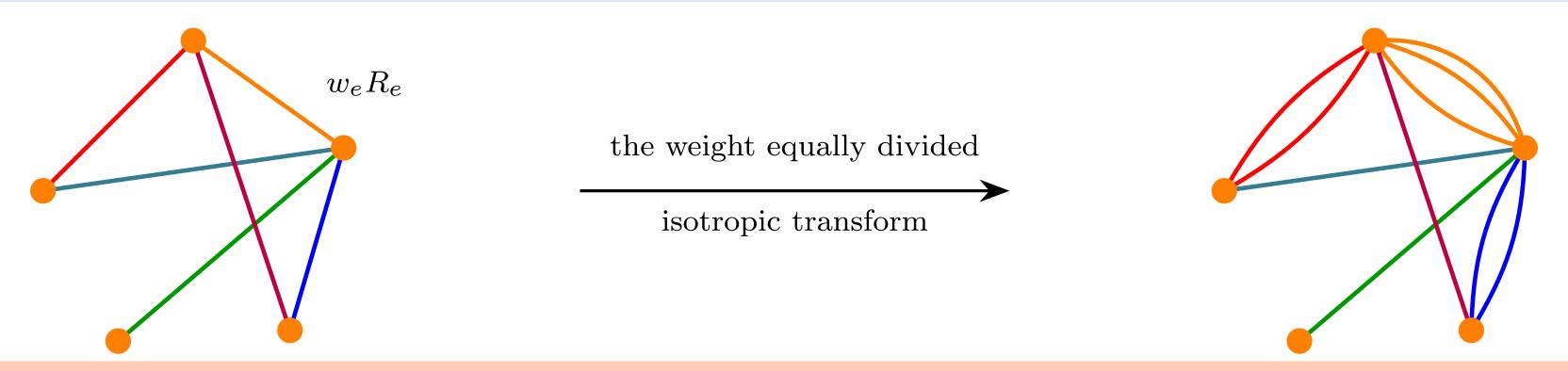
Isotropic Transformation

Defintion.

Given a graph G = (V, E, w) and a vector $\widetilde{R} \in \mathbb{R}^E$ approximating effective resistances R, the isotropic-transformed multigraph G' = (V, E', w') is constructed as follows:

Each edge $e \in E$ is replaced by $q_e = \lceil m \cdot w_e \widetilde{R}_e / (2n) \rceil$ parallel edges.

Each copy has weight w_e/q_e .



Proposition.

The transformed graph satisfies $|E'| \le 2m$, and the marginals are nearly uniform:

$$\Pr[e' \in S, S \sim \mathcal{W}_{G'}] \le 2n/m = o(1)$$
.

Then the mixing time is $\widetilde{O}(1)$, by the analysis in [ALV22].

Implicit Isotropic Transformation

Quantum Graph Sparsification [AdW22]

Time $\widetilde{O}(\sqrt{mn})$

Rather than explicitly computing this isotropic transformation, we utilize a quantum data structure \mathcal{R} which provides quantum query access to effective resistances, to "implicitly" construct and maintain the isotropic-transformed multigraph.

Quantum Isotropic Sampling with ${\mathscr R}$ (up step)

Time $\widetilde{O}(\sqrt{mn})$

Sample $\Theta(n)$ edges from the isotropic-transformed multigraph uniformly at random (a sampling-without-replacement variant of multiple-state preparation [Ham22]).

Quantum Minimum Spanning Tree [DHHM06]

Time $\widetilde{O}(\sqrt{mn})$

Find a spanning tree with maximum product of edge weights as a "good" starting point for the down-up walk.

Quantum Lower Bound

Lower bound:

Let $\varepsilon < 1/2$ be a constant. For any graph G, consider the problem of sampling a random spanning tree from a distribution ε -close to W_G . The quantum query complexity of this problem is $\Omega(\sqrt{mn})$.

Follows via reduction from finding n marked elements among m, which has quantum query complexity $\Theta(\sqrt{mn})$. The reduction encodes the search into edge weights so that a uniform spanning tree reveals the marked elements.

Similar to the $\Omega(\sqrt{mn})$ lower bound for MST in [DHHM06].

Open Questions

- Faster algorithm for unweighted graphs?
- •The down-up walk is a powerful tool in classical algorithms (e.g., colorings, matchings). Can our quantum approach yield speedups for them?
- Determinantal Point Processes (DPPs)?

Thanks for your attention!